466 research outputs found

    Cost benefit analysis of applying PHM for subsea applications

    Get PDF

    The great triangular seismic region in eastern Asia: Thoughts on its dynamic context

    Get PDF
    AbstractA huge triangle-shaped tectonic region in eastern Asia plays host to numerous major earthquakes. The three boundaries of this region, which contains plateaus, mountains, and intermountain basins, are roughly the Himalayan arc, the Tianshan-Baikal, and longitude line ∼105°E. Within this triangular region, tectonism is intense and major deformation occurs both between crustal blocks and within most of them. Outside of this region, rigid blocks move as a whole with relatively few major earthquakes and relatively weak Cenozoic deformation. On a large tectonic scale, the presence of this broad region of intraplate deformation results from dynamic interactions between the Indian, Philippine Sea-West Pacific, and Eurasian plates, as well as the influence of deep-level mantle flow. The Indian subcontinent, which continues to move northwards at ∼40 mm/a since its collision with Eurasia, has plunged beneath Tibet, resulting in various movements and deformations along the Himalayan arc that diffuse over a long distance into the hinterland of Asia. The northward crustal escape of Asia from the Himalayan collisional zone turns eastwards and southeastwards along 95°–100°E longitude and defines the eastern Himalayan syntaxis. At the western Himalayan syntaxis, the Pamirs continue to move into central Asia, leading to crustal deformation and earthquakes that are largely accommodated by old EW or NW trending faults in the bordering areas between China, Mongolia, and Russia, and are restricted by the stable landmass northwest of the Tianshan-Altai-Baikal region. The subduction of the Philippine and Pacific plates under the Eurasian continent has generated a very long and narrow seismic zone along trenches and island arcs in the marginal seas while imposing only slight horizontal compression on the Asian continent that does not impede the eastward motion of eastern Asia. In the third dimension, there may be southeastward deep mantle flow beneath most of Eurasia that reaches the marginal seas and may contribute to extension along the eastern margin of Eurasia

    Engineering multiple levels of specificity in an RNA viral vector

    Get PDF
    Synthetic molecular circuits could provide powerful therapeutic capabilities, but delivering them to specific cell types and controlling them remains challenging. An ideal "smart" viral delivery system would enable controlled release of viral vectors from "sender" cells, conditional entry into target cells based on cell-surface proteins, conditional replication specifically in target cells based on their intracellular protein content, and an evolutionarily robust system that allows viral elimination with drugs. Here, combining diverse technologies and components, including pseudotyping, engineered bridge proteins, degrons, and proteases, we demonstrate each of these control modes in a model system based on the rabies virus. This work shows how viral and protein engineering can enable delivery systems with multiple levels of control to maximize therapeutic specificity

    Programmable protein circuits in living cells

    Get PDF
    Synthetic protein-level circuits could enable engineering of powerful new cellular behaviors. Rational protein circuit design would be facilitated by a composable protein-protein regulation system in which individual protein components can regulate one another to create a variety of different circuit architectures. In this study, we show that engineered viral proteases can function as composable protein components, which can together implement a broad variety of circuit-level functions in mammalian cells. In this system, termed CHOMP (circuits of hacked orthogonal modular proteases), input proteases dock with and cleave target proteases to inhibit their function. These components can be connected to generate regulatory cascades, binary logic gates, and dynamic analog signal-processing functions. To demonstrate the utility of this system, we rationally designed a circuit that induces cell death in response to upstream activators of the Ras oncogene. Because CHOMP circuits can perform complex functions yet be encoded as single transcripts and delivered without genomic integration, they offer a scalable platform to facilitate protein circuit engineering for biotechnological applications

    Methyl-CpG binding protein 2 is associated with the prognosis and mortality of elderly patients with hip fractures

    Get PDF
    Objectives: To investigate the expression level and clinical significance of Methyl-CpG binding Protein 2 (MECP2) in elderly patients with hip fractures. Methods: This prospective observational study included 367 elderly patients with hip fractures between April 2016 and December 2018. All the patients were treated with internal fixation or joint replacement. In addition, 50 healthy elderly individuals were enrolled as healthy controls. The serum levels of MECP2 and inflammatory factors Interleukin (IL)-1β, IL-6, IL-8, and Tumor Necrosis Factor (TNF)-α was determined by enzyme-linked immunosorbent assay. Data on patients' basic characteristics and postoperative complications were collected. The Harris score was used to assess hip function at 1-month, 3-months, and 6-months after surgery. Patient quality of life was measured using the Barthel Index (BI) score 3-months after surgery. The 1-year mortality was analyzed using the Kaplan-Meier curve, and logical regression was used to analyze the risk factors for mortality. Results: No significant differences were observed in the basic clinical characteristics of all patients. The serum MECP2 levels were remarkably high in patients with hip fractures and negatively correlated with serum IL-1β, IL-6, and TNF-α levels. Patients with higher MECP2 predicted higher dynamic Harris scores, lower postoperative complications, lower 1-year mortality, and higher BI scores. Logical regression showed that age was the only independent risk factor for postoperative 1-year mortality in elderly patients with hip fractures. Conclusion: Lower MECP2 predicted poor prognosis and higher 1-year mortality in elderly patients with hip fractures

    Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems

    Full text link
    In this work we find that not only the Heisenberg-like uncertainty products and the R\'enyi-entropy-based uncertainty sum have the same first-order values for all the quantum states of the DD-dimensional hydrogenic and oscillator-like systems, respectively, in the pseudoclassical (D→∞D \to \infty) limit but a similar phenomenon also happens for both the Fisher-information-based uncertainty product and the Shannon-entropy-based uncertainty sum, as well as for the Cr\'amer-Rao and Fisher-Shannon complexities. Moreover, we show that the LMC (L\'opez-Ruiz-Mancini-Calvet) and LMC-R\'enyi complexity measures capture the hydrogenic-harmonic difference in the high dimensional limit already at first order
    • …
    corecore